1. Interest Rate Derivatives (FRA, IRS, Interest Rate Futures and Options

1.1 Instruments

Interest Rate Swap (IRS) is an agreement between two parties to exchange cash flows based on a specified amount of principal for a set length of time. IRS is a long term agreement. In Poland maturities reach 10 years (in the world up to 30 years).

FRA (forward rate agreement) is a transaction in which two counterparties agree to a single exchange of cash flows based on fixed and a floating rate. A 3x9 FRA means a contract on a six-month WIBOR (in Poland) reference rate, three months forward. No payment will take place until floating rate six-month WIBOR is revealed after three months. In Poland settlement will take place in advance, eg. after 3 months. The share of the five most active banks in turnover accounts for almost 90 per cent. Most of transactions are speculative.

Interest rate futures contracts are traded on organized exchanges. In the world interest rate futures (eurodollar, T-bills, T-note, T-bond, municipal bond) contracts represent more than one-half of the entire futures market. In Poland there is still very small interest in interest rate futures. The first IR futures on WIBOR in Poland were introduced by Warsaw Commodities Exchange in February 1999 and after short period these contracts disappeared.

IR options are instruments which give the right to buy or sell interest rate sensitive instruments at a pre-determined interest rate. The price of the option is a premium paid on the second day after transaction. Options on forward interest rate (WIBOR) have been traded (OTC market) from 1998. PLN options are also written by London investment banks. Banks quote volatility.

1.1.1 IRS

In an interest rate swap (IRS) cash flows are denominated in the same currency. An interest swap does not involve an exchange of principal. The two parties arrange to make periodic exchanges of cash flows based on a common national principal and two separate interest rates, one that remains fixed and one that is reset (floating rate). All settlements are made on a net basis.

Terms of the swap transaction

- 1. notional principal,
- 2. floating rate and reference dates,
- 3. fixed rate,
- 4. settlement dates,
- 5. collateral,
- 6. currencies.

Long and Short Position

The two parties to the transaction are referred to as the pay-fixed and receive-fixed.

The fixed-rate payer is said to have "bought" the swap or taken the long position. The fixed-rate receiver is said to have "sold", or taken the short position. The floating rate is treated as the "commodity" that the two parties are trading.

Payments

Fixed-rate payments are usually calculated using "actual/365" convention. The daycount convention for the swap floating rate-payments is usually "actual/360". Under these conditions the formulas for the settlement calculations are following:

(1)
$$OS_t = s * \frac{p_t}{365} * K$$

(2)
$$OZ_t = LIBOR_{t-1} * \frac{p_t}{360} * K$$

where

 OS_t - fixed rate payment, OZ_t - floating-rate payment, s - swap fixed rate, SFR, LIBOR_{t-1} - floating rate LIBOR at date t-1, p_t - number of days in period t, t - period, K - notional principal, NP.

Maturity	es the following s Treasury Yield	Bid Swap	Ask Swap Spread (bps)	Effective Fixed Swap Rate	
2				10,02% - 10,05%	
3	9,92%	28	29 31	10,20% - 10,23%	
4	10,10%	30	33	10,40% - 10,43%	
5	10,41%	27	31	10,68% - 10,72%	
7	10,64%	36	40	11,00% - 11,04%	
10	10,82%	38	42	11,20% - 11,24%	
15	11,09%	58	63	11,67% - 11,72%	
The dealer an	ranges IRS with a	counternarty	X with the fo	llowing terms	
Origination d	5		2000-01-15		
Maturity date			2005-01-15		
Notional prin			10 000 000		
Fixed-rate pa	-		Counterparty X		
Swap fixed rate:			10,72%		
Convention:			365		
Fixed-rate rec	eiver:		Dealer		
Floating rate:			6M WIBOR		
Convention:			360		
Settlement da	ites:		January 15th	and July 15th of each year	
WIBOR deter	rmination:			n advance, paid in arrears	
The dealer an	ranges IRS with a	counternarty	Y with the fo	llowing terms	
Origination d	-	<u>e o unicorpuroj</u>	2000-01-15		
Maturity date			2005-01-15		
Notional prin			10 000 000		
Fixed-rate pag	-		Dealer		
Swap fixed rate:			10,68%		
Convention:			365		
Fixed-rate rec	eiver:		Counterparty	Y	
Floating rate:			6M WIBOR		
Convention:			360		
Settlement da	ites:		January 15th and July 15th of each year		
WIBOR deter	rmination:		Determined in advance, paid in arrears		

Problem 1. IRS

Required

- (a) Draw a box-and-arrow diagram from a dealer's point of view.
- (b) Calculate the swap cash flows assuming the 6M WIBOR path shown in the following table.

)%
%
%
%
%
%
%
%
%
%
%

(c) Calculate the swap dealer's profit on each settlement date.
Calculate the swap dealer's profit assuming 90/360 conventions is used

Solution

(a)

(u)		6M WIBOR	6M WIBOR		
	Counterparty X	 ←────	Dealer	<	Counterparty Y
]		>	
		10,72%		10,68%	
(b)					
			Floating	Fixed	Counterparty X
Settlement	Number	6M WIBOR	Rate	Rate	Net Receipt
Date	of Days		Receipt	Payment	(Payment)
2000-01-15	-	10,400%	-	-	-
2000-07-15	182,00	10,600%	525 778	534 532	-8 754
2001-01-15	184,00	9,100%	541 778	540 405	1 372
2001-07-15	181,00	8,100%	457 528	531 595	-74 067
2002-01-15	184,00	7,600%	414 000	540 405	-126 405
2002-07-15	181,00	9,100%	382 111	531 595	-149 483
2003-01-15	184,00	10,100%	465 111	540 405	-75 294
2003-07-15	181,00	10,500%	507 806	531 595	-23 789
2004-01-15	184,00	10,600%	536 667	540 405	-3 739
2004-07-15	182,00	8,400%	535 889	534 532	1 357
2005-01-15	184,00	10,200%	429 333	540 405	-111 072
			4 796 000	5 365 874	-569 874

			Fixed	Floating	Counterparty Y
Settlement	Number	6M WIBOR	Rate	Rate	Net Receipt
Date	of Days		Receipt	Payment	(Payment)
2000-01-15	-	10,400%	-	-	-
2000-07-15	182,00	10,600%	532 537	525 778	6 759
2001-01-15	184,00	9,100%	538 389	541 778	-3 389
2001-07-15	181,00	8,100%	529 611	457 528	72 083
2002-01-15	184,00	7,600%	538 389	414 000	124 389
2002-07-15	181,00	9,100%	529 611	382 111	147 500
2003-01-15	184,00	10,100%	538 389	465 111	73 278
2003-07-15	181,00	10,500%	529 611	507 806	21 805
2004-01-15	184,00	10,600%	538 389	536 667	1 722
2004-07-15	182,00	8,400%	532 537	535 889	-3 352
2005-01-15	184,00	10,200%	538 389	429 333	109 056
			5 345 852	4 796 000	549 852

(c)

The dealer's cash flows are as follows

Settlement	Receipt	Payment	Net Receipt			
Date						
2000-01-15	-	-	-			
2000-07-15	534 532	532 537	1 995			
2001-01-15	540 405	538 389	2 016			
2001-07-15	531 595	529 611	1 984			
2002-01-15	540 405	538 389	2 016			
2002-07-15	531 595	529 611	1 984			
2003-01-15	540 405	538 389	2 016			
2003-07-15	531 595	529 611	1 984			
2004-01-15	540 405	538 389	2 016			
2004-07-15	534 532	532 537	1 995			
2005-01-15	540 405	538 389	2 016			
	5 365 874	5 345 852	20 022			

If the 180/360 convention was used for both interest rates, the dealer's profit would be fixed and equal to

 $(10,72\%-10,68\%) * 180/360 * 10\ 000\ 000 = 2\ 000.$

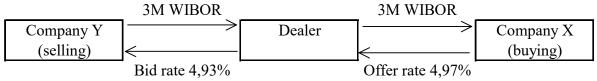
1.1.2 FRA

Problem 2. FRA

The actual bid-offer quates on FRA are following

Period	Bid	Offer
3 x 6	4,93%	4,97%
6 x 9	4,84%	4,88%
9 x 12	4,86%	4,90%
12 x 15	5,07%	5,11%
15 x 18	5,03%	5,07%
18 x 21	5,05%	5,09%
21 x 24	5,11%	5,15%

Required


(a) Draw a box-and-arrow diagram for a 3x6 FRA.

(b) Suppose that the dealer buys 3x6 FRA from Company Y. Notional principal is \$1 000 000. The 3M WiBOR is 5,0% on the rate determination date. Calculate the net payment.

(c) Calculate the net in advance payment.

Solution

(a)

(b)

The net payment in month 6 woould be (5,00%-Bid rate 4,93%) / 4 * 1 000 000 = 185,2.

(c)

If settled in advance, the payment in month 3 would be 185,2/(1+5,00%/4) = 182,9.

1.2 Pricing Interest Rate. Up-front fee. Valuation (MTM)

A plain vanilla swap's price is its fixed rate (FSR – fixed swap rate). Swap pricing is not the same as swap valuation.

A plain vanilla swap pricing is the process of setting the fixed rate, so that the initial value of the swap is zero for both counterparties. Although the swap fixed rate is quoted off the Treasury yield curve, it is priced off an appropriate forward curve corresponding to the floating reference rate on the swap.

The swap's fixed rate should be established at the level so that the present value of the fixed cash flows eventually adjusted by an up-front fee equals the present value of the floating cash flows implied by the forward rates. These forward rates may be observed, calculated or estimated. The appropriate spot rates are used as discounting rates.

The process of valuation is called "mark-to-market". Thereafter it is positive for one counterparty making it an asset and negative for another counterparty making it a liability. The value of the swap is found by comparing FSR to the current swap fixed rate on a swap having the same terms and remaining time to maturity as the original transaction.

1.2.1 Swap with a LIBOR/WIBOR as a reference rate

The FRA interest rates

In the United States the FRA prices are derived from the observed LIBOR forward curve (Eurodollar futures) because it indicates directly the levels of the floating interest rate that can be locked in by arbitrage transactions. In Poland instead WIBOR futures do no exist and the FRA prices may be derived only using implied forward rates, which are inferred from the WIBOR and WIBID spot interest rates and eventually interest rates observed in the FX swap market.

Swap with a tenor up to 2 years

In the United States and in Poland the fixed rate of the interest rate swap with a tenor of up to two years is established using the observed FRA interest rates.

Swap with a tenor between 2 and 10 years

In the United States the fixed rate of the interest rate swap with a tenor of between 2 and 10 years is established using the observed LIBOR forward curve (Eurodollar futures). In Poland WIBOR futures do not exist. The forward curve for WIBOR must be estimated off the forward curve for Treasury securities. The following procedure for a U.S. swap exceeding 10 years applies.

Swap with a tenor exceeding 10 years

In the United States the fixed rate of the interest rate swap with a tenor exceeding 10 years is established using estimated forward rates. These estimated LIBOR forward rates are predicted using the forward rates for Treasury securities and independently forecasted TED (Treasury Eurodollar Difference). The forward rates for Treasury securities are implied forward rates calculated using spot Treasury curve. The spot Treasury curve is sometimes directly observed but it is usually derived using the "bootstrapping" procedure.

1.2.2 Swap with a Treasury yield as a reference rate

Assuming that floating-rate payments are made on the basis of a/360 and fixed-rate payments are made on the basis of a/365 (other assumptions will be introduced subsequently)

$$\sum_{t=1}^{T} \frac{{}_{t} f_{t-1} \frac{p_{t}}{360} K_{t}}{\left(1 + z_{t} \frac{p_{t}}{360}\right)^{t}} = \sum_{t=1}^{T} \frac{s_{T} \frac{p_{t}}{365} K_{t}}{\left(1 + z_{t} \frac{p_{t}}{360}\right)^{t}} + PP_{0}$$

where

 $tf_{t-1} - forward rate, \\ p_t - number of days in period t \\ K_t - notional principal in period t, \\ s_T - swap fixed rate, \\ z_t - spot rate (discounting rate, \\ PP_0 - up-front fee, \\ t - period (t=1,2,...,T),$

(3)
$$PP_{0} = \sum_{t=1}^{T} \frac{{}_{t} f_{t-1} \frac{p_{t}}{360} K_{t}}{\left(1 + z_{t} \frac{p_{t}}{360}\right)^{t}} - \sum_{t=1}^{T} \frac{s_{T} \frac{p_{t}}{365} K_{t}}{\left(1 + z_{t} \frac{p_{t}}{360}\right)^{t}}$$

Swap fixed rate is equal to:

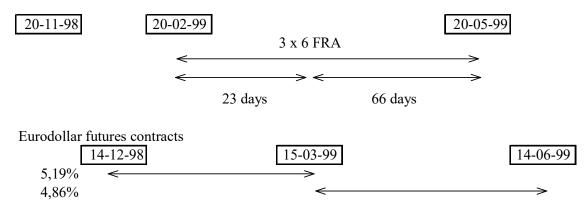
$$s_{T} = \frac{\sum_{t=1}^{T} \frac{\int_{t=1}^{t} \frac{p_{t}}{360}}{\left(1 + z_{t} \frac{p_{t}}{360}\right)^{t}} K_{t}}{\sum_{t=1}^{T} \frac{\frac{p_{t}}{365}}{\left(1 + z_{t} \frac{p_{t}}{360}\right)^{t}} K_{t}}$$

1.2.3 Swap with a WIBOR (LIBOR) rate

(4)
$$\sum_{t=1}^{T} \frac{{}_{t} f_{t-1} \frac{d_{t} - d_{t-1}}{360} K_{t}}{1 + z_{t} \frac{d_{t}}{360}} = \sum_{t=1}^{T} \frac{s_{T} \frac{d_{t} - d_{t-1}}{365} K_{t}}{1 + z_{t} \frac{d_{t}}{360}}$$

Swap fixed rate is equal to:

$$s_{T} = \frac{\sum_{t=1}^{T} \frac{t^{t} f_{t-1} \frac{d_{t} - d_{t-1}}{360}}{1 + z_{t} \frac{d_{t}}{360}} K_{t}}{\sum_{t=1}^{T} \frac{\frac{d_{t} - d_{t-1}}{365}}{1 + z_{t} \frac{d_{t}}{360}} K_{t}}$$


Problem 3. Pricing FRA rates using Eurodollar futures

Troblem 5: Trieng r KA rates using Eurodonar rutures							
Suppose today is: 20-11-98. Three-month LIBOR is 5,25%							
The three-month forward rates for Eurodollar futures contracts are following:							
	Maturity Rate						
	12-98	5,19%					
	03-99	4,86%					
	06-99	4,86%					
	09-99	4,89%					
	12-99	5,16%					
	03-00	5,02%					
	06-00	5,09%					
	09-00	5,15%					
Required							
(a) Calculate the prices for a series 3 x 6, 6 x 9, 9 x 12, 12 x 15, 15 x 18, 18 x 21, 21 x 24							
of FRA transactions based on Eurodollar futures.							
(b) Calculate the prices for a series 6 x 12, 12 x 18, 18 x 24 of FRA							
using rates calculated in part	(a).						

Solution

(a)

A 3 x 6 FRA rate is calculated as a weighted average of December and March Eurodollar futures rates. The number of days before and after March futures contract divided by the number of days for a FRA transaction are used as weights.

The FRA rates for a series of seven contracts:

FRA	Method of calculation							
3 x 6	(5,19% * 23 days + 4,86% * 66 days): 89 days = 4,95%							
6 x 9	(4,86% * 25 days + 4,86% * 67 days): 92 days = 4,86%							
9 x 12	(4,86% * 24 days + 4,89% * 68 days): 92 days = 4,88%							
12 x 15	(4,89% * 23 days + 5,16% * 69 days): 92 days = 5,09%							
	(5,16% * 22 days + 5,02% * 68 days): 90 days = 5,05%							
18 x 21	(5,02% * 30 days + 5,09% * 62 days): 92 days = 5,07%							
	(5,09% * 29 days + 5,15% * 63 days): 92 days = 5,13%							

Futures	Futures	FRA	Futures	FRA	Days (p_1)	Days (p_2)	Forward
maturity	rate	1st date	maturity	2nd date	Days (p ₁)	Days (P ₂)	rate
12-98	5,19%	20-11-98	14-12-98	20-02-99	24	68	5,25%
03-99	4,86%	20-02-99	15-03-99	20-05-99	23	66	4,95%
06-99	4,86%	20-05-99	14-06-99	20-08-99	25	67	4,86%
09-99	4,89%	20-08-99	13-09-99	20-11-99	24	68	4,88%
12-99	5,16%	20-11-99	13-12-99	20-02-00	23	69	5,09%
03-00	5,02%	20-02-00	13-03-00	20-05-00	22	68	5,05%
06-00	5,09%	20-05-00	19-06-00	20-08-00	30	62	5,07%
09-00	5,15%	20-08-00	18-09-00	20-11-00	29	63	5,13%

Calculations are made using the following table

(b)

(0)						
FRA	Method of calculation					
6 x 12	1 + 4,86% * 92/360) (1 + 4,88% * 92/360) = (1 + FRA 6x12 * 184/360)					
	Thus FRA $6x12 = 4,90\%$.					
12 x 18	(1 + 5,09% * 92/360) (1 + 5,05% * 90/360) = (1 + FRA 12x18 * 182/360)					
	Thus FRA $12x18 = 5,10\%$.					
18 x 24	(1 + 5,07% * 92/360) (1 + 5,13% * 92/360) = (1 + FRA18 x24 * 184/360)					
	Thus FRA $18x24 = 5,13\%$.					

Problem 4. Pricing Interest Rate Swap Off the FRA Curve

The current FRA term structure is

FRA	Rate	Days (p _t)
0 x 6	5,1331%	181
6 x 12	4,9014%	184
12 x 18	5,1036%	182
18 x 24	5,1324%	184

The notional principal of the swap is \$100 million.

(a) Determine the fixed rate on the two-year interest swap using FRA rates and the following day-count conventions: "30/360", "actual/365" and "actual/360".

(b) Determine the fixed rate on the two-year interest swap under the assumption that the fixed-rate receiver will pay up-front fee equal to 2% of the notional principal ?

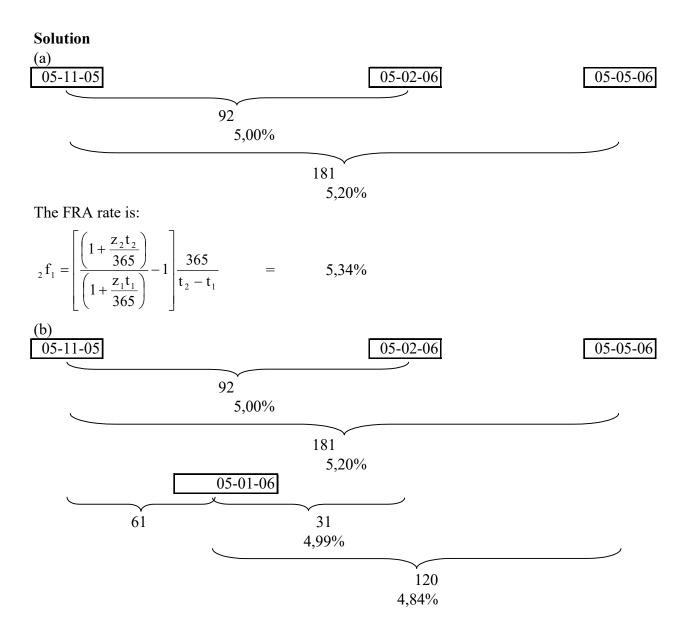
(a)								
	K _t	$p_t = d_t - d_{t-1}$	$_{t}f_{t-1}$	$\frac{p_t}{360}$	$1 + f_{t-1} \frac{p_t}{360}$	k _t	a _t	$\sum_{t=1}^{T} {}_{t} f_{t-1} \frac{p_t}{360} K_t a_t$
0 x 6	100	181	5,13%	0,503	102,58%	102,58%	97,48%	2,5
6 x 12	100	184	4,90%	0,511	102,51%	105,15%	95,10%	4,9
12 x 18	100	182	5,10%	0,506	102,58%	107,86%	92,71%	7,3
18 x 24	100	184	5,13%	0,511	102,62%	110,69%	90,34%	9,7

Solution (a)

The fixed swap rates for semiannual settlements are not equal to fixed swap rates for quarterly settlements.

	$\sum_{t=1}^T \frac{1}{2} K_t a_t$	s _{30/360}	$\sum_{t=1}^{T} \frac{p_t}{365} K_t a_t$	s _{a/365}	$\sum_{t=1}^T \frac{p_t}{360} K_t a_t$	s _{a/360}
0 x 6	48,7	5,1616%	48,3	5,2044%	49,0	5,1331%
6 x 12	96,3	5,0869%	96,3	5,0874%	97,6	5,0177%
12 x 18	142,6	5,1108%	142,5	5,1157%	144,5	5,0456%
18 x 24	187,8	5,1434%	188,1	5,1370%	190,7	5,0666%

The fixed swap rate on a two-year interest swap is 5,1434% (30/360 basis), 5,1370% (a/365 basis), and 5,0666% (a/360 basis).


(b)	
· /	

As the fixed-rate receiver pays an up-front fee, the swap fixed rates are lower.

	$\sum_{t=1}^T \frac{1}{2} K_t a_t$	s _{30/360}	$\sum_{t=1}^{T} \frac{p_t}{365} K_t a_t$	s _{a/365}	$\sum_{t=1}^T \frac{p_t}{360} K_t a_t$	s _{a/360}
0 x 6	48,7	1,0584%	48,3	1,0672%	49,0	1,0525%
6 x 12	96,3	3,0099%	96,3	3,0102%	97,6	2,9690%
12 x 18	142,6	3,7087%	142,5	3,7123%	144,5	3,6614%
18 x 24	187,8	4,0785%	188,1	4,0734%	190,7	4,0176%

Problem 5. Pricing and Valuation of FRA

The current term structure of WIBOR is					
92 -day WIBOR	5,00%				
181 -day WIBOR	5,20%				
The notional principal is \$100 000.					
(a) Calculate FRA.					
(b) It is 61 days later and the relevant term structure is					
31 -day WIBOR	4,99%				
120 -day WIBOR	4,84%				
Determine the market value of the FRA.					
(c) On the expiration day, 89-day WIBOR is 4,00%. Determine the payment.					

The value of FRA will be

$$V_{t} = \left(\frac{1}{1 + \frac{z_{1}'t_{1}'}{365}} - \frac{1 + {}_{2}f_{1}\frac{t_{2} - t_{1}}{365}}{1 + \frac{z_{2}'t_{2}}{365}}\right)K = -137,722$$

or

$$V_{t} = \begin{pmatrix} 2f_{t} & = & 4,77\% \\ \frac{2}{2}f_{t} - \frac{1}{2}f_{t}}{1 + \frac{2}{2}f_{t}} & \frac{1}{365} \end{pmatrix} K = -137,722$$

(c)

At expiration, the payoff is

$$\mathbf{V}_{t} = \left(1 - \frac{1 + \frac{1}{2} \mathbf{f}_{1} \frac{\mathbf{t}_{2} - \mathbf{t}_{1}}{365}}{1 + \frac{\mathbf{z}_{2}^{'} \mathbf{t}_{2}^{'}}{365}}\right) \mathbf{K} = -323,451$$

or

$$V_{t} = \left(\frac{z_{2}^{"} - f_{1}}{1 + \frac{z_{2}^{"} t_{2}}{365}} \frac{t_{2} - t_{1}}{365}\right) K = -323,451$$

Problem 6. Pricing and Valuation of IRS

Consider a one-year interest swap with semiannual payments.						
(a) Determine the fixed rate on the swap.						
The current structure of WIBOR spot rates is given as follows.						
	Days	184	365			
	WIBOR	4,50%	4,60%			
(b) 153 days later, the term structu	re is as follows:					
	Days	31	212			
WIBOR 4,99% 4,77%						
Determine the market value of the swap from the perspective of the party						
paying the fixed rate and receiving the floatnig rate. Assume the notional						
principal of \$100 000 million.						

Solution (a)			
$s_{T} = \frac{1 - \frac{1}{1 + z_{T} \frac{d_{T}}{365}}}{\sum_{t=1}^{T} \frac{\frac{d_{t} - d_{t-1}}{365}}{1}} =$	4,55%		
d _t	184	365	
Zt	4,50%	4,60%	
$1/(1+z_t d_t/365)$	0,9778	0,9560	
d _t - d _{t-1}	184	181	
$(d_t - d_{t-1})/365$	0,5041	0,4959	Σ
$(d_t - d_{t-1})/365/(1+z_t dt/365)$	0,4929	0,4741	0,9670
(b) $f = p_t + 1$ $g = p_t$			

MTM_t =
$$\frac{{}_{t} f_{t-1} \frac{p_{t}}{365} + 1}{1 + z_{t} \frac{d_{t}}{365}} - \sum_{t=1}^{T} \frac{s_{T} \frac{p_{t}}{365}}{1 + z_{t} \frac{d_{t}}{365}} - \frac{1}{1 + z_{T} \frac{d_{T}}{365}}$$

The present value of floating payments

Number of days	184
Floating rate (least reference date)	4,50%
Cash flows	1,0227
Number of days	31
Spot rate	4,99%
Present value factor	0,996
Discounted cash flow	1,0184

The present value of remaining fixed payments:

Number of days			
Swap fixed rate			
Cash flows			
Number of days			
Spot rate			
Present value factor			Σ
Discounted cash flow			1,0178
X	100 000	=	58
	Х	184 4,55% 0,0229 31 4,99% 0,9958 0,0228 x	4,55%4,55%0,02291,0226312124,99%4,77%0,99580,97300,02280,9950

1.3 Hedging

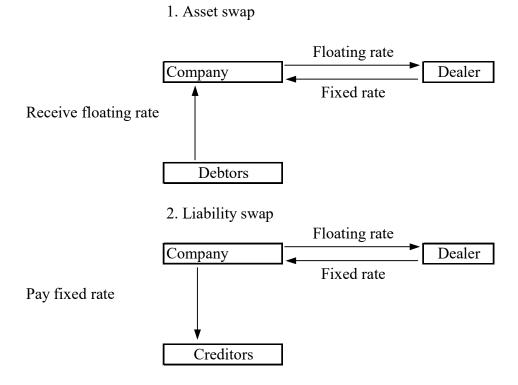
1.3.1 Swap Applications

- 1. Interest rate gap management
- 2. Currency gap management
- 3. Credit risk arbitrage
- 4. Structured finance
- 5. Asymmetric information

1.3.2 Interest rate management

Duration is a measure of the interest rate sensitivity of an asset value. The durations of the assets and liabilities are obtained as weighted averages of the individual items. A duration gap of zero implies a hedged position against interest rate risk. A conservative bank will attempt to set its duration gap to zero. The positive duration gap means that the bank is exposed to rising interest rates. Implementing the desired duration gap without derivatives is difficult. The long position in a swap or FRA transaction will lengthen liability duration and decrease duration gap. The negative duration gap means that the bank is exposed to falling interest rates. The short position in a swap or FRA transaction will lengthen asset duration and increase duration gap.

The notional capital of a FRA or swap transaction is derived using the following equation:


(5) $L_B A + D_S K = L_P (A+K)$ where: L_B – the existing duration gap, A – assets D_S – swap's duration, K – notional principal, L_P – required duration gap. Solving for K we obtain:

(6)
$$K = \frac{A(L_B - L_P)}{L_P - D_S}$$

The duration of the FRA or swap transaction should be higher than the required duration gap.

A swap used to restructure assets is referred to asset swap. A swap used to restructure liabilities is called a liability swap. Both of them may imply increase or decrease of a duration gap (figure 1).

Increase duration gap

Decrease duration gap

Figure 1. Asset Swap and Liability Swap

Problem 7. D	Juration Gap
--------------	--------------

Consider t	he followin	ig balance s	heet			
	Assets	\$ million	Duration	Claims	\$ million	Duration
	Group I	100	0,00	Group I	600	1,00
	Group II	200	2,00	Group II	100	2,00
	Group III	100	3,00	Group III	100	3,00
	Group IV	100	5,00	Group IV	100	4,00
	Group V	500	6,00	Equity	100	0,00
	Total	1000	4,20	Total	1000	1,50

(a) Calculate the duration gap. What is the interest rate exposure ?

What is the impact of a 300-basis-point increase on the equity?

- (b) Calculate the notional principal of a swap transaction to set the duration gap to zero. Assume that the duration for a swap transaction is -4,5 years. Show a new balance sheet.
- (c) Calculate the notional principal of a swap transaction to set the required duration gap equal to 1,0 year. Show a new balance sheet.

Solution

(a)

Duration gap is equal to 4,20 - 1,50 = 2,70.

The positive duration gap means that the market value of equity would decline if interest rates rose.

The rise in interest rates of 3 basis points will decrease the market value of equity approximately by 2,70 * 3% * 1000 = 81.

(b)

The notional principal should be 1000 * (2,70 - 0,00) : (0,00 - (-4,50)) = 600.

	As	Assets		
	\$ million Duration			
balance sheet	1000	4,20		
swap	600	1,00		
total	1600	3,00		
(a)				

Claims on assets				
\$ million	Duration			
1000	1,50			
600	5,50			
1600	3,00			

(c)

The notional principal should be 1000 * (2,70 - 1,00) : (1,00 - (-4,50)) = 309.

	Assets	
	\$ million	Duration
balance sheet	1000	4,20
swap	309	1,00
total	1309	3,44

Claims on assets		
\$ million	Duration	
1000	1,50	
309	5,50	
1309	2,44	